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Abstract

This is a study to assist in the understanding of earth near
surface structure. Higher order moments are used to detect the

density distribution as well as to seek patterns found in
geological structures. It is shown how higher order moments at
points outside a mass structure are determined as well as how to
recover the mass distribution from the higher order moments. It
is interesting to note that the f'trst moment at a point P outside
the mass structure,V0(P), is the entire mass and the second
moment, VI(P), is the potential at P due to the mass structure.
Usually only the mass and the potential function are used to

determine the density distribution in a body. In this study an

infinite function sequence {Vn(P)}n= 0 is required to uniquely

determine the density distribution.
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Density Determination

Suppose that A is a material body, i.e., not a point mass, that is

modeled by assuming that there is a non negative continuous

function g defined on a closed and bounded subset K of euclidean

three space E, where K is a geometric approximation of A and g is

an approximation to the density function of A. Note that K need

not be connected, i.e., K need not be "in one piece".

We shall denote the real number line by R, and the euclidean inner

product on by < • ,- > which induces a norm II • II. If r is a positive

number and P is a point in E, then

Sr(P) = { Qis in E: IIP - Q II < r }

and BdrySr(P) = { Qis in E: II P - QII = r}.

Since K is bounded there is a number r>0 and a point C, the

geometric center, of K such that K is contained in Sr(C). Let D

denote the complement of Sr(C) in E.

For each non negative integer n, Vn is the real valued function

defined on D by

Vn(P) = I __(0) dQ for P in D.

Sr(C) IIP-QII n
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The above integral is a triple integral. Notice that Vo(P) is the

mass of K, and Vl(P) is the Newtonian potential at P due to the
mass K.

Suppose g is a non negative continuous function def'med on E, S]

is a ball containing K centered at the geometric center of K, $2 is a

ball properly containing S1 that is concentric with S1 and also g is

zero on the complement of $2.

, ' 2
I I
I I
I I
I I

There is a one-to-one correspondence between the set
V = { { Vn(P) }n=0, P is in the complement of sphere $2 }

and g, moreover g can be constructed from the set V.

Suppose P is in D. Let mp be the mass function defined on the

real line R by

mp(x)-- 0 if x _<0

and mp(x) = ff g(Q) dQif x > 0.

Sx(P)
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Observe that for each point P in D, mp is a real-valued, non

decreasing continuous function on R, which has a continuous

derivative and hence is of bounded variation on R. ( Recall that

mp is constant except on a finite interval of the line.)

m'p(x) = 0 if x <0,

m'p(x) = Jg(x,z) dz if Sr(C)intersects BdrySx(P)

Sr(C) _ BdrySx(P)

, and

m'p(x) = 0 if x> 0 and Sr(C) does not intersect BdrySx(P).

If P is a point, then

up = inf { II P - QII : Qis in Sr(C) } = II P - C II - r
vp--sup{llP-QIl:Qisin Sr(C) }=llP-CIl+r.

Observe that Vn(P) =

Vp

_(1/tn) drop(t) for

Up

n = 0,1,2,.. .
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Making a change of variables s = 1/t

Vp-1
ill

Vn(P) = J sn dmp(1/s)

up-1

Define for each point P in D

Ap = vp-1,

and Mp(x) = M - mp(I/x)

for up _< t _<vp, we have

for n = 0,1,2,...

Bp = up -1

Ap < x < Bp.

Note that Mp(Ap) = O, and Mp(Bp) = M,

hence extend Mp to (O, Bp) by defining Mp(x) = O for O < x < Ap.

Finally

M'p(Ap) = m'p(1/Ap)(1/Ap 2) = 0 and hence Mp has a continuous

derivative on (0, Bp).

We now have

Bp

Vn(P) = J x n dMp(x) for n = 0,1,2,3...,

0

M'p(Bp) = m'p(1/Bp)(1 / Bp2) = 0,

and the sequence {Vn(P)}n=0 satisfies the Hausdorf conditions

(See appendix 1).

Suppose for each point P on the surface of $2, where $2 is a

sphere properly containing and concentric with the sphere S1

which contains K, with center C, (the geometric center of K), the

sequence =

{ Vn(P) }n is known.

For each such point P consider the line Lp containing P and C the

center of S l.
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From the sequence [Vn(P)]n we can recover (see A1) the function

rap. Hence for each point P on $2 we have rap, then using the
method of bilinear forms we may recover (see appendix 2) the
function g.
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APPENDIX A1 **

Suppose that the number sequence {Cn}n__0 is known and satisfies

the Hausdorf Condition i.e., there is a positive number H such
that

n n-t

B(n,t) I _ B(n-t,s) (-1)s Ct+s I < H for n = 0,1,2,...
t=0 s=O

where B(n,t) is the binomial coefficient n[/( t! ( n-t )! ).
For each non negative in n and each number x in the number

interval [0,1] define
w n-t

gn(x) = _ B(n,t)_ B(n-t,s) (-1)s Ct+s ifw/n _<x<((w +l)/n).
t=O s=O

I
I

I

i
I
0

O=__
n

g
n

)

I I i I I I
w.w_l w+__l mn= 1

n I n n

The function sequence gn then converges pointwise to a function

g on [0,1]. The function g is of bounded variation on [0,1] with

total variation not exceeding H and has the property that
i

f xn dg(x) = Cn for n = 0,1,2, ....

0
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APPENDIX A2

If for each point P on the surface of a hemisphere we know

Mp(x), then we can determine g on K in the following manner.

A sequence of functions is created that will converge pointwise to

g, on a dense subset of $2 (g is the restriction of g to the dense

subset ). Since g is continuous, we can extend g to g on $2.

We define for each positive integer n a function fn on the three

dimensional normalized grid Gn.
n n n

fn( x, y, z) = _z_ _z_ ____i(x) _)j(y) _k(Z) Wijk for the point (x,y,z)

i=1 j=l k=l

in the grid Gn where n + 1 is the number of grid points on a side

and h is 1/n. The problem is to determine Wijk for 1 < i,j,k _<n.

Below is a two dimensional schematic to suggest the three
dimensional case.

1=
1
4,

(I) function on grid Typical (I) function
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The function fn is integrated over the same portion of the grid as

is intersected by the sphere centered at a point P of radius r (see

schematic figure below) and set equal to rap(r), which was

constructed from the sequence {Vn(P)}n. By selecting various

points P and various radii we have a system of linear equations

in Wijk that we can solve and thus determine the function fn. As

stated before, the sequence {fn}n converges pointwise on dense

subset to O, which is then extended to the function g.

'...........!!!iiiiiiii!_i!iiiiiiiiiiiii..............
f!iii',iiii!',iiiPii.iJ.i.!.!.i.!',!!',iiiiiiii',i!4!i!!!i',ii',

Grid covering I< r P
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